segunda-feira, 10 de agosto de 2020

Vitamina B5 (Ácido Pantotênico)

Benefícios: A vitamina B5 age no metabolismo da glicose, dos ácidos graxos e aminoácidos, ou seja, ajuda o organismo a utilizar essas substâncias com eficiência.


Além disso, ela também desempenha um papel importante na formação da bainha de mielina, que fica em torno das fibras nervosas e permite mensagens entre os nervos, dentre as vitaminas do complexo B a mais importante para o sistema nervoso é a vitamina B12.

Este nutriente também auxilia na produção de hormônios da glândula suprarrenal e ajuda o fígado a detoxificar o álcool.

Problemas causados pela falta: A deficiência de vitamina B5 pode causar fadiga, formigamento nas mãos e pés, dores musculares, irritabilidade, depressão, distúrbios de sono, retardo de crescimento, queda de cabelo, envelhecimento precoce, artrite, alergias e estresse.

Fontes: As principais fontes de vitamina B5 são ovos, leite, carnes (visceras), leguminosas, como ervilhas e feijão, cogumelos e gérmen de trigo.

Os 10 Benefícios da Vitamina B5 ou Ácido Pantotênico Para Saúde ...Em 1933, descobriu-se uma substância essencial para o crescimento de leveduras, que foi denominada de ácido pantotênico, por estar presente em uma variedade de tecidos, pois em grego, a palavra panthos significa “em todos os lugares”. O ácido pantotênico é composto pelo ácido pantóico ligado a uma subunidade beta-alanina, por ligação peptídica. O ácido pantotênico é um componente da coenzima A (CoA), assumindo um papel central nas reações de liberação de energia a partir dos carboidratos. Quando o ácido pantotênico liga-se a um grupo beta-mercaptoetilamina, torna-se panteteína. A fosfopanteteína faz ligação covalente a várias proteínas, particularmente aquelas envolvidas no metabolismo dos ácidos graxos, estando envolvida na síntese de compostos como os hormônios esteroides, o colesterol e os fosfolipídios. A coenzima A dos alimentos é hidrolisada no lúmen intestinal, liberando o ácido pantotênico. A absorção intestinal ocorre por transporte ativo dependente do sódio, mas também por difusão simples, numa razão constante por todo o intestino delgado. No sangue, o ácido pantotênico absorvido liga-se aos eritrócitos. A captação do ácido pantotênico plasmático pela maioria dos tecidos (coração, músculo e fígado) ocorre por mecanismo ativo dependente de sódio; a sua passagem para o sistema nervoso central ocorre por difusão facilitada. Nas células, a CoA é sintetizada do ácido pantotênico, a partir da enzima pantotenato quinase. Por sua vez, o catabolismo da CoA leva à formação do pantotenato, excretado na urina. Há boa correlação da excreção urinária com os níveis de ingestão alimentar do ácido pantotênico. O ácido pantotênico dos alimentos ocorre principalmente como CoA. É amplamente distribuído em todos os alimentos, especialmente em carnes de vaca e frango, batata, aveia e outros cereais integrais, tomate, fígado e vísceras, fermento, gema de ovo e brócolis. O processo de cocção destrói 15% a 50% do ácido pantotênico das carnes e 37% a 78% da vitamina presente nos vegetais. Portadores de insuficiência renal submetidos ao trata-mento dialítico constituem-se em grupo de risco, assim como os indivíduos alcoolistas. Pessoas idosas e mulheres que usam contraceptivos orais podem apresentar baixos níveis séricos de ácido pantotênico. O diabetes melito induz aumento da excreção urinária, e síndromes disabsortivas podem cursar com graus variados de deficiência.

Vitamina B3 (Niacina)

Os 10 Benefícios da Vitamina B3 Para Saúde | Alimentação saudável ...

 Benefícios: A vitamina B3 possui forte ação antioxidante e por isso age combatendo os radicais livres. Além disso, ela age no metabolismo da glicose, dos ácidos graxos e aminoácidos, ou seja, ajuda o organismo a utilizar essas substâncias com eficiência.

Além disso, ela também desempenha um papel importante na formação da bainha de mielina, que fica em torno das fibras nervosas e permite mensagens entre os nervos, dentre as vitaminas do complexo B a mais importante para o sistema nervoso é a vitamina B12.

Problemas causados pela falta: A falta de vitamina B3 pode causar insônia, cansaço, irritabilidade, manchas na pele, depressão e uma doença chamada pelagra que causa diarreia, inflamação na pele e confusão mental.

Mulheres que utilizam anticoncepcionais excretam mais a vitamina B3 pela urina, mas normalmente a própria alimentação já compensa essa falta. Pessoas em tratamento de tuberculose podem precisar do suplemento do nutriente, mas essa necessidade só será determinada pelo médico ou nutricionista.

O excesso de vitamina B3 não é bom para o organismo, pois pode afetar o fígado, por isso não ingira suplementos do nutriente sem orientação.

Fontes: As principais fontes são levedo de cerveja, cogumelos, fígado, peixes, leites, ovos. Algumas oleaginosas, como amendoim e castanha do pará, frutas secas, tomate e cenoura.

A niacina é um termo genérico que engloba o ácido nicotínico e a nicotinamida, dois nucleotídeos piridínicos que atuam como precursores da coenzima nicotinamida-adenina-dinucleotídeo (NAD, coenzima I) e de sua forma fosforilada (NADP, coenzima II). Por participarem do ciclo do ácido cítrico, essas coenzimas são essenciais para as reações produtoras de energia celular. Há no mínimo 200 enzimas dependentes de NAD e NADP que atuam no metabolismo dos carboidratos, dos aminoácidos e dos lipídios, além de participarem na síntese de hormônios adrenocorticais a partir da acetil coenzima A (CoA), na deidrogenação do local etílico e na conversão de ácido láctico em ácido pirúvico. O NAD participa do reparo do DNA e na transcrição, e o NADH, forma reduzida de NAD, é substrato para a NADH desidrogenase da cadeia respiratória mitocondrial. A niacina pode ser sintetizada in vivo a partir do aminoácido essencial triptofano em quantidade correspondente a 60:1 (60mg de triptofano pode ser convertido em 1mg de niacina). Em média, 1g de proteína provê 10mg de triptofano ou 0,17mg de equivalente de niacina (NE). A síntese de niacina a partir do triptofano ocorre tanto pela flora intestinal quanto nos tecidos.

Mesmo em baixa concentração, a absorção do ácido nicotínico e da nicotinamida ocorre rapidamente em toda a extensão do intestino delgado. Os nucleotídeos da nicotinamida são hidrolisados e a nicotinamida liberada é absorvida por difusão facilitada. Circula no plasma na forma livre, onde é transportada para o fígado e convertida a NAD(H) e NADP(H), com a participação da vitamina B6. A nicotinamida e o ácido nicotínico são abundantes na natureza. Há predominância de ácido nicotínico em vegetais, enquanto a nicotinamida predomina nos produtos animais. A alimentação é a principal fonte de niacina, sendo encontrada na carne vermelha, leite e derivados, ovos, fígado, peixe, leveduras, cereais integrais e em vários vegetais (brócolis, tomate, cenoura, aspargo, abacate e batata-doce). A carne vermelha é uma das melhores fontes de equivalentes de niacina, por sua abundância na vitamina pré-formada e em triptofano. A contribuição dos vegetais e frutas depende da quantidade ingerida, visto que tais alimentos não são ricos em niacina. Embora, leite e ovos contenham pequenas concentrações de niacina préformada, seu conteúdo em triptofano provê quantidade suficiente para a síntese in vivo. A niacina dos alimentos é relativamente resistente ao processo de cozimento. O milho tem grande quantidade de niacina, embora essa vitamina tenha baixa biodisponibilidade no organismo. Por ser componente da função respiratória enzimática, a necessidade de niacina está vinculada ao gasto energético. A estimativa da necessidade de niacina para o organismo também leva em consideração a síntese dessa substância a partir do triptofano. A pelagra clássica é uma doença nutricional caracterizada pela deficiência grave de niacina e associada ou não ao déficit do aminoácido essencial triptofano. A doença pode ser primária (deficiência alimentar) ou secundária a uma enfermidade subjacente. Classicamente, tem sido descrita deficiência primária de niacina em populações com alimentação à base de milho. Além da baixa concentração de niacina no milho, existe elevada concentração de leucina no sorgo, que bloqueia a síntese do ácido nicotínico. O alcoolismo crônico é a principal causa de deficiência de niacina, como resultado de ingestão insuficiente, má absorção intestinal e aumento da excreção urinária. 

Vitamina B2 (Riboflavina)

Os 21 Benefícios da Vitamina B2 Para Saúde | Dicas nutricionais ...

 Benefícios: A vitamina B2 possui forte ação antioxidante e por isso age combatendo os radicais livres. Além disso, ela age no metabolismo da glicose, dos ácidos graxos e aminoácidos, ou seja, ajuda o organismo a utilizar essas substâncias com eficiência.

Além disso, ela também desempenha um papel importante na formação da bainha de mielina, que fica em torno das fibras nervosas e permite mensagens entre os nervos, dentre as vitaminas do complexo B a mais importante para o sistema nervoso é a vitamina B12.

Problemas causados pela falta: A deficiência de vitamina B2 é rara, mas vegetarianos, alcoólatras, crianças, gestantes e idosos estão mais vulneráveis ao problema. A falta deste nutriente pode causar tontura, vertigem, dermatite seborreica, inflamação nos lábios e língua e coceira nos olhos.

Fontes: As principais fontes de vitamina B2 são carnes (fígado) , leites, ovos, legumes, verduras, especialmente o brócolis, cereais integrais, leguminosas, como ervilhas, algumas oleaginosas, como amendoim, castanhas e nozes, e abacate e o levedo de cerveja.

VITAMINA B2 - RIBOFLAVINA A riboflavina foi isolada do soro de leite em 1879, recebendo o nome de lactocromo. Posteriormente, a vitamina foi isolada em diferentes alimentos ou substâncias, sendo chamada de lactoflavina, ovoflavina, hepatoflavina, verdoflavina, uroflavina e vitamina G. Atualmente, é conhecida como vitamina B2, ou riboflavina, nome atribuído à cor amarela do grupo flavínico (do latim flavus, “amarelo”) e devido à presença de ribose em sua estrutura. A forma fosforilada da riboflavina foi identificada no extrato de levedura, em 1932. Sua estrutura química foi elucidada em 1933, e sua síntese foi feita em 1935. A estrutura da forma fosforilada riboflavina-mononucleótido (FMN) foi identificada em 1937. No ano seguinte, pesquisadores isolaram e caracterizaram a riboflavina-adenina dinucleótido adenino da flavina (FAD) e demonstraram a sua participação como coenzima. A partir dessa época, seguiram-se inúmeros experimentos em animais de laboratórios, tanto para elucidar os efeitos da fortificação de alimentos com riboflavina como para verificar as manifestações clínicas da deficiência dessa vitamina. A determinação das necessidades nutricionais e a biodisponibilidade da riboflavina foi avaliada entre 1940 e 1960. O teste da atividade da glutationa redutase para avaliação dos níveis de riboflavina foi proposto em 1968, sendo utilizado desde então. A riboflavina é formada por um anel isoaloxazina com uma cadeia ribitol, denominada 7,8 dimetil-10-isoaloxazina. Na natureza, a riboflavina é encontrada na forma livre, como FMN e FAD. Em tecidos biológicos, é encontrada principalmente como FAD, em menor extensão como FMN e como grupos prostéticos de flavoproteínas responsáveis por processos de óxido-redução. As formas fisiologicamente ativas, FAD e FMN, têm papel vital no metabolismo como coenzimas para uma grande variedade de flavoproteínas respiratórias, algumas das quais contendo metais (como a xantina oxidase). A riboflavina atua como cofator redox no metabolismo gerador de energia, sendo essencial para a formação dos eritrócitos, a neoglicogênese e na regulação das enzimas tireoideanas. Com exceção de leite e ovos, que contém grandes quantidades de riboflavina livre, a maior parte da vitamina presente nos alimentos encontra-se sob a forma de FMN e FAD ligada a proteínas. A hidrólise feita pelo suco gástrico libera a riboflavina e a absorção ocorre principalmente no jejuno. O mecanismo é pouco conhecido, mas aparentemente a absorção depende do número de transportadores no epitélio intestinal ou da variação da atividade desses transportadores, regulados pela disponibilidade corporal da vitamina. Embora pouco absorvida, a riboflavina pode ser produzida pela flora bacteriana do intestino grosso. Grande parte da riboflavina absorvida é fosforilada na mucosa intestinal pela flavoquinase e entra na circulação sanguínea como riboflavina fosfato. No plasma sanguíneo, liga-se de forma inespecífica a proteínas, como albumina e algumas imunoglobulinas, além da ligação específica às proteínas transportadoras de riboflavina, especialmente durante a gestação. A concentração sanguínea total é de cerca de 0,03 uM, estando na forma de riboflavina livre (50%), FAD (40%) e em menor concentração como FMN (10%). O armazenamento corporal da riboflavina é restrito e ocorre principalmente no fígado, baço e músculo cardíaco. Os mecanismos homeostáticos não permitem grandes variações na concentração de riboflavina no cérebro. Quando as necessidades metabólicas são atingidas, ocorre aumento da excreção urinária da riboflavina e de seus metabólitos, até que a absorção intestinal seja saturada. A distribuição da riboflavina nos alimentos é ampla, mas a sua concentração é baixa. Entre os alimentos fonte pode-se destacar o leite e seus derivados, carne e vísceras (fígado e rins), vegetais folhosos verdes (couve, brócolis, repolho e agrião), ovos e ervilhas. Nos países em desenvolvimento, as principais fontes de riboflavina são os vegetais verdes; nos países desenvolvidos, os produtos lácteos. A riboflavina é moderadamente solúvel em soluções aquosas, termoestável e sensível à radiação ultravioleta. Assim, durante o cozimento dos alimentos, estima-se uma perda de cerca de 20% da sua concentração, podendo chegar a 50% se houver exposição solar durante o processo. Durante o processamento de grãos há perda considerável do teor de riboflavina dos alimentos. Pessoas com baixa ingestão de riboflavina constituem-se no grupo de risco para a deficiência, que são os idosos, as mulheres em uso crônico de contraceptivos orais, as crianças e os adolescentes de baixo nível socioeconômicos. Os quadros de deficiência podem ocorrem em pessoas com baixa ingestão, no alcoolismo, em pacientes com doenças que cursam com estresse orgânico grave (como nas queimaduras e no pós-operatório de grandes cirurgias), além da má absorção intestinal. A deficiência de riboflavina tem sido também observada em pacientes com doenças crônicas debilitantes (infecção pelo HIV, tuberculose, endocardite bacteriana subaguda), diabetes,hipertiroidismo e cirrose hepática. Recém-nascidos sob fototerapia prolongada para tratamento de hiperbilirrubinemia podem apresentar evidências bioquímicas de deficiência de riboflavina, devido à fotólise dessa vitamina.


Vitamina B1 (Tiamina)

 

Como identificar e tratar o beribéri - Tua Saúde


Benefícios: A vitamina B1 age principalmente no metabolismo da glicose, dos ácidos graxos e aminoácidos, ou seja, ajuda o organismo a utilizar essas substâncias com eficiência.

Além disso, ela também desempenha um papel importante na formação da bainha de mielina, que fica em torno das fibras nervosas e permite mensagens entre os nervos, dentre as vitaminas do complexo B a mais importante para o sistema nervoso são as vitaminas B12, B6, B3 e B1.

Problemas causados pela falta: A falta de vitamina B1 pode causar fraqueza muscular, falta de energia, diminuição da memória e depressão.

A carência extrema deste nutriente pode causar a doença beribéri que causa uma neuropatia periférica, formigamento nas mãos, fraqueza nas pernas, dificuldade para caminhar e alterar a sensibilidade da pele.

Alcoólatras correm maior risco de desenvolver a carência de vitamina B1 e em consequência disso ter uma demência que causa confusão mental, dificuldade de raciocínio, memória e pode fazer até que a pessoa entre em coma.

Fontes: As principais fontes de vitamina B1 são carnes, leites, ovos, legumes e cereais integrais e leguminosas como feijão e grão de bico.

Os 15 Benefícios da Vitamina B1 Para Saúde | Dicas nutricionais ... Inicialmente, essa vitamina foi chamada de aneurina ou vitamina antineurítica. Seguiram-se inúmeros estudos nos quais a tiamina teve sua função metabólica definida como coenzima.


A tiamina é formada pela ligação de metileno entre uma molécula de pirimidina substituída e um anel tiazol. A forma fisiologicamente ativa é a tiamina pirofosfato (TPP), coenzima que atua como uma cocarboxilase na descarboxilação oxidativa de alfacetoácidos, como o piruvato e o alfacetoglutarato. Participa também nas reações da transcetolase na via da pentose fosfato, fornecendo ribose para a síntese de nucleotídeos e ácidos nucleicos. Tem papel na síntese de ácidos graxos, por promover a redução da nicotinamida adenina dinucleotídeo fosfato (NADPH). Há evidências que a TPP e a tiamina trifosfato (TT) participam da transmissão do impulso nervoso. Em alimentos, a tiamina pode ser encontrada na forma fosforilada (produtos de origem animal) ou livre (produtos de origem vegetal). Durante o processo de absorção, a tiamina livre é fosforilada à TPP pela tiamina pirofosfoquinase, enzima presente na mucosa intestinal. No ambiente intracelular, a TPP é defosforilada por fosfatases microssomais. No plasma, a tiamina encontra-se como monofosfato de tiamina (60%) e o restante na sua forma livre, que pode ser rapidamente fosforilada no fígado. Todos os tecidos captam as formas livres ou fosforiladas e são capazes de transformá-las em di e trifosfato de tiamina, pela ação da pirofosfoquinase. No cérebro e em outros tecidos nervosos, parte da tiamina é fosforilada à TPP pela tiamina fosforiltransferase. A tiamina dos alimentos pode ser absorvida na sua forma livre ou como fosfato de tiamina, pela ação das fosfatases intestinais. A absorção ocorre principalmente no duodeno, mas também no jejuno e em menor proporção no íleo. Quando a oferta é baixa, a tiamina é absorvida por transporte ativo saturável, dependente da adenosina trifosfatase, dependente de sódio, enzima presente na membrana basolateral do endotélio vascular. Alguns estudos têm demonstrado que o conteúdo de fibras dietéticas e os compostos fenólicos presentes nos alimentos interferem na biodisponibilidade da tiamina. A deficiência pode não ser atribuída à carência alimentar, sendo secundária à infecção pelo fungo Penicillium citreonigrun, que libera a toxina citreoviridina, inibindo sua absorção da vitamina. Outras enzimas, encontradas em peixes de rio, também podem causar deficiência de tiamina. Existem vários derivados sintéticos da tiamina, inclusive com características lipossolúveis, que apresentam melhor absorção que a forma hidrossolúvel. Estima-se que o conteúdo total de tiamina no corpo humano seja de 30mg, estando pouco armazenada no organismo, especialmente no coração, rins, fígado e cérebro. Diariamente, cerca de 1mg é degradada nos tecidos; no organismo, a tiamina tem meia-vida de 9 a 18 dias. Em altas temperaturas, o suor pode conter de 30 a 56nmol de tiamina/L, representando uma perda significante da vitamina. Quantidades excedentes de tiamina e seus metabólitos são excretadas na urina, além de pequenas quantidades na bile. O tiocromo é o principal produto de excreção urinária, além de pequena quantidade de vitamina livre, as formas mono e difosfato, a tiamina dissulfito e cerca de 20 outros metabólitos. A tiamina é encontrada em quantidades relativamente pequenas em uma ampla variedade de alimentos. São consideradas fontes ricas de tiamina nas leveduras, no farelo de trigo, nos cereais integrais e nas castanhas. Hortaliças, frutas, ovos, carne de frango, carneiro e boi são fontes intermediárias, enquanto o leite contém quantidades relativamente baixas de tiamina. Por se tratar de uma vitamina hidrossolúvel, o processo de cozimento determina perda de cerca de 80% do conteúdo de tiamina dos alimentos. Atualmente, a deficiência primária de tiamina é rara, embora possa ser encontrada em populações cuja alimentação é rica em carboidratos. Quadros de deficiência ocorrem em alcoolistas, pacientes submetidos à nutrição parenteral, portadores de má absorção intestinal (incluindo as cirurgias bariátricas disabsortivas) e indivíduos sob tratamento dialítico. VITAMINA B1 - TIAMINA Benefícios à saúde - Mantém o sistema nervoso e circulatório em bom funcionamento. Previne o envelhecimento, melhora a função cerebral, combate a depressão e a fadiga. Fontes - É abundante em vegetais de folhas (alface romana, espinafre), berinjela, cogumelos, grãos de cereais integrais, feijão, nozes, atum, carne bovina e de aves. Deficiência - Pessoas com deficiência de vitamina B1 apresentam inapetência, baixa aceitação da dieta e consequente perda de peso, confusão mental e fraqueza muscular. Em casos mais grave pode haver comprometimento do coração.


terça-feira, 4 de agosto de 2020

VITAMINA A






Funções adicionais: 

- Anticarninogênico
-Previne o envelhecimetno da pele
-Aumenta a visão e previne a cegueira noturna
-Aumenta a capacidade de cura do corpo
-Promove o crescimento e a saúde dos ossos, cabelos, dentes, pele e gengivas
-Ajuda no tratameno do hipertireodismo

0BS: CUIDADO COM GESTANTE OU MULHERES TENTANDO ENGRAVIDAR

A deficiência prolongada de vitamina A pode causar uma grave doença carencial, a hipovitaminose A, que pode, por sua vez, acarretar xeroftalmia e cegueira. Embora possa ser prevenida, a hipovitaminose A ainda é um problema de saúde pública em vários países em desenvolvimento. O presente artigo traça um panorama da informação disponível sobre a deficiência de vitamina A no mundo e especialmente no Brasil. Além disso, discute o impacto social da hipovitaminose A, um importante determinante da morbidade e mortalidade em crianças, e a relevância da prevenção no combate a essa desordem. Apesar dos estudos já realizados no Brasil, as informações disponíveis não são suficientes para que se possa diagnosticar a magnitude e a gravidade da hipovitaminose A em nível nacional, especialmente porque todos os estudos se apóiam em amostras pequenas, e os inquéritos clínicos e bioquímicos são escassos, além de apresentar resultados contraditórios. Mesmo assim, é possível constatar que o consumo de vitamina A é baixo nas classes sociais pobres e que o nível de ingestão recomendado pela Organização Mundial da Saúde não é alcançado pela maioria das crianças. Em parte, isso poderia ser evitado com orientação alimentar relativa aos alimentos ricos em vitamina A e esclarecimento sobre tabus alimentares. Nesse contexto, a escola tem um papel crucial na prevenção da deficiência da vitamina A, tanto entre os alunos quanto junto à comunidade.


Vitaminas-minerais pequeno resumo

AS VITAMINAS As vitaminas são compostos orgânicos presentes nos alimentos, essenciais para o funcionamento normal do metabolismo. Atuam na transformação de energia, mesmo que não sejam fontes, agem em diferentes sistemas e auxiliam nas respostas imunológicas do organismo, protegendo-o. A palavra vitamina é derivada da combinação das palavras: vital e amina, e foi concebida pelo químico polonês Casimir Funk, em 1912, que isolou a vitamina B1 , ou a tiamina, do arroz. Isso determinou uma das vitaminas que prevenia o Beribéri, doença deficitária marcada por inflamações, lesões degenerativas dos nervos, sistema digestivo e coração. As vitaminas são moléculas orgânicas (contendo carbono) que funcionam principalmente como catalisadores para reações dentro do organismo. Um catalisador é uma substância que permite que uma reação química ocorra usando menos energia e menos tempo do que levaria em condições normais. Se esses catalisadores estiverem faltando, como na carência de vitaminas, as funções normais do organismo podem entrar em colapso, deixando o organismo suscetível a doenças. As vitaminas são tanto solúveis em gordura como em água. As solúveis em gordura são as vitaminas A, D, E e K. Essas vitaminas se acumulam dentro da gordura armazenada no organismo e dentro do fígado. As vitaminas solúveis em água incluem a vitamina C e as vitaminas B, ambas armazenadas no fígado. A carência de vitaminas no organismo, chamada hipovitaminose ou avitaminose, é responsável pelo surgimento de doenças. Para o organismo não sofrer nenhuma carência de vitaminas, é recomendado fazer uso diário de alimentos como frutas, legumes, verduras, carnes, ovo, leite e grãos. A classificação das vitaminas é feita apenas por sua solubilidade e não pelas funções que exercem. Cada uma é responsável por uma ou mais funções específicas, independentemente do grupo a que pertencem. As principais vitaminas são: A, B, C, D, E e K. 

Vitaminas: o que são, para que servem e tipos - Toda Matéria

Vitamina B5 (Ácido Pantotênico)

Benefícios:   A vitamina B5 age no metabolismo da glicose, dos ácidos graxos e aminoácidos, ou seja, ajuda o organismo a utilizar essas subs...